NDLI logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. Theoretical and Computational Fluid Dynamics
  2. Theoretical and Computational Fluid Dynamics : Volume 30
  3. Theoretical and Computational Fluid Dynamics : Volume 30, Issue 3, June 2016
  4. Spreading dynamics of droplet on an inclined surface
Loading...

Please wait, while we are loading the content...

Theoretical and Computational Fluid Dynamics : Volume 31
Theoretical and Computational Fluid Dynamics : Volume 30
Theoretical and Computational Fluid Dynamics : Volume 30, Issue 6, December 2016
Theoretical and Computational Fluid Dynamics : Volume 30, Issue 5, October 2016
Theoretical and Computational Fluid Dynamics : Volume 30, Issue 3, June 2016
Numerical simulation of dielectric bubbles coalescence under the effects of uniform magnetic field
Interaction of two spark-generated bubbles near a confined free surface
Computational study of bouncing and non-bouncing droplets impacting on superhydrophobic surfaces
Spreading dynamics of droplet on an inclined surface
A comparison of data reduction techniques for the aeroacoustic analysis of flow over a blunt flat plate
Theoretical and Computational Fluid Dynamics : Volume 30, Issue 1-2, April 2016
Theoretical and Computational Fluid Dynamics : Volume 29
Theoretical and Computational Fluid Dynamics : Volume 28
Theoretical and Computational Fluid Dynamics : Volume 27
Theoretical and Computational Fluid Dynamics : Volume 26
Theoretical and Computational Fluid Dynamics : Volume 25
Theoretical and Computational Fluid Dynamics : Volume 24
Theoretical and Computational Fluid Dynamics : Volume 23
Theoretical and Computational Fluid Dynamics : Volume 22
Theoretical and Computational Fluid Dynamics : Volume 21
Theoretical and Computational Fluid Dynamics : Volume 20
Theoretical and Computational Fluid Dynamics : Volume 19
Theoretical and Computational Fluid Dynamics : Volume 18
Theoretical and Computational Fluid Dynamics : Volume 17
Theoretical and Computational Fluid Dynamics : Volume 16
Theoretical and Computational Fluid Dynamics : Volume 15
Theoretical and Computational Fluid Dynamics : Volume 14
Theoretical and Computational Fluid Dynamics : Volume 13
Theoretical and Computational Fluid Dynamics : Volume 12
Theoretical and Computational Fluid Dynamics : Volume 11
Theoretical and Computational Fluid Dynamics : Volume 10
Theoretical and Computational Fluid Dynamics : Volume 9

Similar Documents

...
A lattice Boltzmann-Saltation model and its simulation of aeolian saltation at porous fences

Article

...
Numerical methods for the simulation of a coalescence-driven droplet size distribution

Article

...
Lattice Boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field

Article

...
Ground effects on separated laminar flows past an inclined flat plate

Article

...
Swimming in an inviscid fluid

Article

...
Start-up slip flow in a microchannel with a rectangular cross section

Article

...
Moffatt eddies at an interface

Article

...
Flow recovery downstream from a surface protuberance

Article

...
Multiple-relaxation-time lattice Boltzmann method for study of two-lid-driven cavity flow solution multiplicity

Article

Spreading dynamics of droplet on an inclined surface

Content Provider SpringerLink
Author Shen, Chaoqun Yu, Cheng Chen, Yongping
Copyright Year 2015
Abstract A three-dimensional unsteady theoretical model of droplet spreading process on an inclined surface is developed and numerically analyzed to investigate the droplet spreading dynamics via the lattice Boltzmann simulation. The contact line motion and morphology evolution for the droplet spreading on an inclined surface, which are, respectively, represented by the advancing/receding spreading factor and droplet wetted length, are evaluated and analyzed. The effects of surface wettability and inclination on the droplet spreading behaviors are examined. The results indicate that, dominated by gravity and capillarity, the droplet experiences a complex asymmetric deformation and sliding motion after the droplet comes into contact with the inclined surfaces. The droplet firstly deforms near the solid surface and mainly exhibits a radial expansion flow in the start-up stage. An evident sliding-down motion along the inclination is observed in the middle stage. And the surface-tension-driven retraction occurs during the retract stage. Increases in inclination angle and equilibrium contact angle lead to a faster droplet motion and a smaller wetted area. In addition, increases in equilibrium contact angle lead to a shorter duration time of the middle stage and an earlier entry into the retract stage.
Starting Page 237
Ending Page 252
Page Count 16
File Format PDF
ISSN 09354964
Journal Theoretical and Computational Fluid Dynamics
Volume Number 30
Issue Number 3
e-ISSN 14322250
Language English
Publisher Springer Berlin Heidelberg
Publisher Date 2015-12-29
Publisher Place Berlin, Heidelberg
Access Restriction One Nation One Subscription (ONOS)
Subject Keyword Droplet Spreading Surface Wettability Lattice Boltzmann simulation Engineering Fluid Dynamics Classical Continuum Physics Computational Science and Engineering
Content Type Text
Resource Type Article
Subject Fluid Flow and Transfer Processes Condensed Matter Physics Computational Mechanics
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
  • Chat with Us
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
I will try my best to help you...
Cite this Content
Loading...